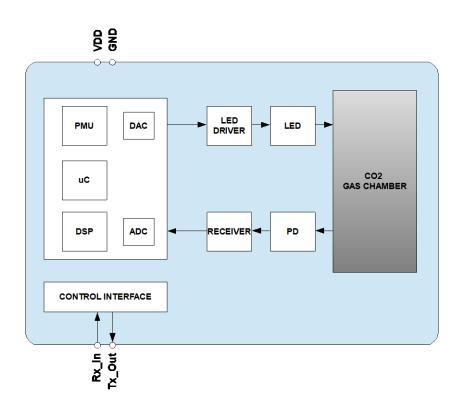


DESCRIPTION

The ExplorIR®-M is a small footprint low power NDIR CO₂ sensor using state-of-the-art solid-state LED optical technology. The low power LEDs are manufactured in-house, giving SST complete control of the CO₂ sensor signal chain.

The ExplorIR®-M is designed for applications that need to work reliably over a wide range of conditions and environments and with the minimum amount of real estate. The sensor is available in multiple versions, capable of measuring CO₂ levels up to 100% concentration.


FEATURES

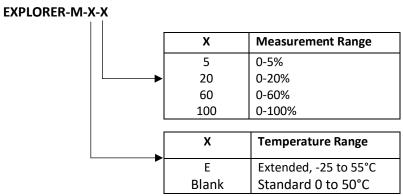
- Small footprint, low power CO₂ sensor
- 70ppm typical measurement accuracy
- Measurement range up to 100% CO₂
- Solid state NDIR LED optical technology
- UART control and data interface
- Built-in auto-zeroing

APPLICATIONS

- Agriculture
- Healthcare
- Safety
- Aerospace
- Food packaging
- Incubators
- Food storage and transportation

BLOCK DIAGRAM

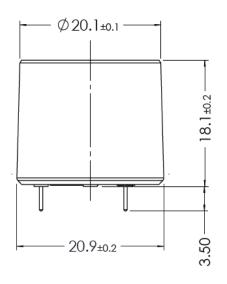
TABLE OF CONTENTS


DESCRIPTION	1
FEATURES	1
APPLICATIONS	1
BLOCK DIAGRAM	
ORDERING INFORMATION	
PACKAGE DRAWING: ExplorIR®-M	
PIN-OUT DESCRIPTION: ExplorIR®-M	5
ABSOLUTE MAXIMUM RATINGS	
CO ₂ PERFORMANCE CHARACTERISTICS	7
ELECTRICAL CHARACTERISTICS	
POWER CONSUMPTION - ExplorIR®-M	
METHOD OF OPERATION	9
MODE 0 COMMAND MODE	9
MODE 1 STREAMING MODE	9
MODE 2 POLLING MODE	9
DIGITAL FILTER	
ZERO POINT SETTING	11
ZERO IN A KNOWN GAS CONCENTRATION	
ZERO IN NITROGEN	
ZERO IN FRESH AIR	
ZERO POINT ADJUSTMENT	
AUTO-ZERO FUNCTION	
AUTO-ZERO INTERVALS	
AUTO-ZERO SETTINGS	
PRESSURE AND CONCENTRATION LEVEL COMPENSATION	
ALTITUDE COMPENSATION TABLE	
CONTROL INTERFACE	
CONTROL INTERFACE TIMING - UART MODE	
UART COMMAND PROTOCOL	
UART OPERATION	
UART INTERFACE SUMMARY	
CO2 LEVEL MEASUREMENT VALUE - Z INFORMATION (0x5A)	
CO2 LEVEL MEASUREMENT VALUE - z INFORMATION (0x7A)	
'.' COMMAND (0x2E)	
K COMMAND	
K COMMAND (0x4B)	19
DIGITAL FILTER COMMANDS	19
A COMMAND (0x41)	19
a COMMAND (0x61)	19
ZERO POINT SETTING COMMANDS	20
F COMMAND (0x46)	20
G COMMAND (0x47)	21

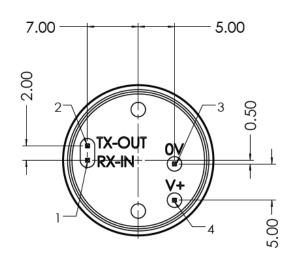
U COMMAND (0x55)	21
u COMMAND (0x75)	21
X COMMAND (0x58)	21
P COMMAND - CO ₂ Level for Auto-Zeroing	21
P COMMAND − CO ₂ Level for Zero-Point Setting	22
AUTO-ZERO INTERVALS@ COMMAND (0x2E)	
PRESSURE AND CONCENTRATION COMPENSATIONS COMMAND (0x53)	
s COMMAND (0x73)	24
MEASUREMENT DATA OUTPUTS	
Q COMMAND	25
SERIAL NUMBER AND FIRMWARE VERSION	25
CONNECTION DIAGRAM FOR UART INTERFACE	26
IMPORTANT NOTICE	
ADDRESS	27
REVISION HISTORY	28

ORDERING INFORMATION

Notes:


1. Sensors are shipped individually

See separate data sheet for ExplorIR®-M evaluation kit options.



PACKAGE DRAWING: ExplorIR®-M

Weight = ~8g

PIN-OUT DESCRIPTION: ExplorIR®-M

PIN	NAME	TYPE	DESCRIPTION		
1	Rx_In	Digital Input	UART Receive Input		
2	Tx_Out	Digital Output	UART Transmit Output		
3	GND	Supply	Sensor ground		
4	VDD	Supply	Sensor supply voltage		

ABSOLUTE MAXIMUM RATINGS

Absolute Maximum Ratings are stress ratings only. Permanent damage to the ExplorIR® may be caused by continuously operating at or beyond these limits. The ExplorIR® functional operating limits and guaranteed performance specifications are given at the test conditions specified.

ESD Sensitive Device. This sensor uses ESD sensitive components. It is therefore generically susceptible to damage from excessive static voltages. Proper ESD precautions must be taken during handling and storage of this device.

CONDITION	MIN	MAX
Supply Voltages	-0.3V	+6.0V
Voltage Range Digital Inputs	GND -0.3V	5V
Operating Temperature Range (T _a)		
- Standard	0°C	+50°C
- Extended	-25°C	+55°C
Storage Temperature Range	-40°C	+70°C
Humidity Range (RH)	0	95%
Operating Pressure Range	500mbar	2bar

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Supply	VDD	3.25	3.3	5.5	V
Ground	GND		0		V

CO₂ PERFORMANCE CHARACTERISTICS

Test Conditions Unless Otherwise Specified

VDD = 3.3V, GND = 0V. RH = 0% non-condensing, T= 25° C, Pressure = 1013 mbar

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
CO ₂ measurement			0		5	%
range			0		20	%
J			0		60	%
			0		100	%
Accuracy (0-5% sensor)		@25°C, @ 2% CO ₂			±(70, +5%	
Accuracy (0-20% sensor)		@25°C, @ 12% CO₂			of reading)	ppm
Accuracy (0-60% sensor)		@25°C, @ 20% CO ₂				
Accuracy (0-100% sensor)		@25°C, @ 60% CO₂			±(300, +5% of reading)	ppm
Accuracy		@25°C		±(70, +5%)		ppm
(Peak-Peak) 0-60%		0°C to +50°C, after zero @25°C		±(70, +5%)		ppm
		-25°C to +55°C, after zero @25°C		±(100, +5%)		ppm
Accuracy		@25°C		±(300, +5%)		ppm
(Peak-Peak) 0-100%		0°C to +50°C, after zero @25°C		±(300, +5%)		ppm
		-25°C to +55°C, after zero @25°C		±(1000, +5%)		ppm
CO ₂ RMS Noise		Digital filter setting 16		0		ppm
Time to Valid		Digital filter setting	1.0	1.2		secs
Measurement		16, dependent on				
After Power-On		digital filter setting				
Response Time		From Oppm to T ₉₀ default settings, limited @ 0.2l/min		30		S
Repeatability		@25°C, 0-60%		±70, +5%		ppm
,		@25°C, 0-100%		±300, +5%		ppm
Current		Peak current when sampling		35		mA
Consumption		Peak at turn-on		40		mA
		SLEEP Mode (K2 polling)		0.01		mA

ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	1	MIN	TYP	MAX	UNIT
		CONDITIONS				
Digital Input/Output	1					
Input HIGH Level			1.8			V
Input LOW Level					1.0	V
Output HIGH Level		I _{OH} = +1mA	2.6		3.0	V
Output LOW Level		I _{OL} = -1mA			0.4	V

POWER CONSUMPTION - ExplorIR®-M

Test Conditions Unless Otherwise Specified

VDD = 3.3V, GND = 0V, RH = 0% non-condensing, T= 25° C, Pressure = 1013mbar

SETTING	SYMBOL	TEST CONDITIONS	VDD		Total Power
			V	I (mA)	mW
Active, KO SLEEP			3.3	0.01	0.03
mode, no					
measurement					
Active, K1 mode		Default settings	3.3	1	3.5
whilst taking					
measurements					

Small Footprint Low Power CO₂ Sensor

METHOD OF OPERATION

After power is applied to the ExplorIR $^{\circ}$ -M, the sensor will automatically start to take CO₂ measurements using the Mode 1 default settings, where the sensor is pre-programmed to send CO₂ measurement data at 2 readings per second.

The measurement rate is fixed at 2 readings per second at a fixed 9600 baud rate. The sensor will return the previous CO₂ measurement results if the user requests more frequent measurements.

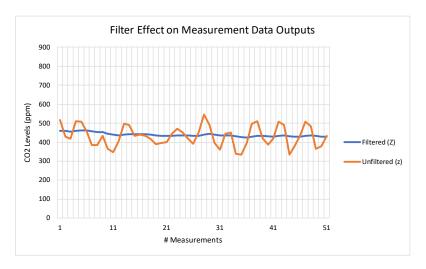
The ExplorIR®-M has 3 potential modes of operation.

MODE 0 COMMAND MODE

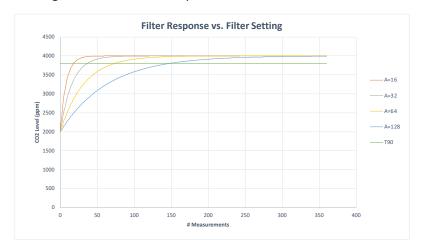
In this mode, the sensor is in a SLEEP mode, waiting for commands. No measurements are made. There is no latency in command responses. All commands that report measurements or alter the zero-point settings are disabled in Mode 0. Mode 0 is NOT retained after power cycling.

MODE 1 STREAMING MODE

This is the factory default setting. Measurements are reported twice per second. Commands are processed when received, except during measurement activity, so there may be a time delay of up to 10ms in responding to commands.


MODE 2 POLLING MODE

In polling mode, the sensor only reports readings when requested. The sensor will continue to take measurements in the background, but the output stream is suppressed until data is requested. The sensor will always power up in streaming or polling mode, whichever mode was used before the power cycle.



DIGITAL FILTER

The CO_2 gas chamber is illuminated with a nominal 4.25um wavelength LED and the signal received using a photo-diode. The signal from the photo-diode is processed and filtered by the sensor to remove noise and provide an accurate CO_2 reading. High frequency noise coming from the sampling process is removed using a proprietary lowpass filter. The digital filter setting can be varied, allowing the user to reduce measurement noise at the expense of the measurement response time. The ideal digital filter setting is application specific and is normally a balance between CO_2 reading accuracy and response time. The ExplorIR®-M sensor will also output the raw unfiltered CO_2 measurement data. This data can be post processed using alternative filter algorithms.

The graph above shows the effects of the filter on the CO₂ measurement data (Z or z). The unfiltered output is shown in orange and the filtered output shown in blue.

The graph above shows the effect of the filter on response times. Increasing the filter setting increases the measurement output response time. T_{90} is the time to 90% of reading. The ExplorIR®-M takes 2 readings per second.

Small Footprint Low Power CO₂ Sensor

ZERO POINT SETTING

There are a several methods available to the user to set the zero point of the sensor. The recommended user method is zero-point setting in a known gas concentration. In all cases, the best zero is obtained when the gas concentration is stable, and the sensor is at a stabilised temperature.

Note that zero-point settings are not cumulative and only the latest zero-point setting is effective. For example, there is no benefit in zeroing in nitrogen, and then zeroing in a calibration gas. The sensor will store only the latest zero point.

To improve zeroing accuracy, the recommended digital filter setting is 32. See the 'A' command.

ZERO IN A KNOWN GAS CONCENTRATION

Place the sensor in a known gas concentration, power up the sensor and allow time for the sensor temperature to stabilise, and for the gas to be fully diffused into the sensor.

Send the **ZERO IN A KNOWN GAS CONCENTRATION** command X to the sensor. The sensor will be zeroed using the known gas concentration level sent by the user. The concentration value written to the sensor must be scaled dependent on the sensor CO₂ measurement range. The multiplier for the scaling factor is set according to the range of the sensor, see the '.' command.

ZERO IN NITROGEN

Place the sensor in nitrogen gas and allow time for the sensor temperature to stabilise and the gas to be fully diffused into the sensor. Send the **ZERO IN NITROGEN** command U to the sensor. The sensor is zeroed assuming a $Oppm CO_2$ environment.

ZERO IN FRESH AIR

If there is no calibration gas or nitrogen available, the sensor zero point can be set in fresh air. Ambient CO_2 concentrations in fresh air are typically 400ppm. The CO_2 concentration fresh air zero level is programmable over a range from 0ppm to the full scale of the sensor.

Place the sensor in a fresh air environment and allow time for the sensor temperature to stabilise, and for the fresh air to be fully diffused into the sensor. Power up the sensor, write the G command to the sensor. The concentration value written to the sensor must be scaled dependent on the sensor CO2 measurement range. The sensor can use the default fresh air CO_2 concentration value (400ppm), or the user can write a different fresh air value to the sensor if desired.

ZERO POINT ADJUSTMENT

If the CO₂ concentration and the sensor reported concentration are known, the zero point can be adjusted using the known concentration to fine tune the zero point. For example, if the sensor has been in an environment that has been exposed to outside air, and the sensor reading is known at

Small Footprint Low Power CO₂ Sensor

that time, the zero point can be fine-tuned to correct the reading. This is typically used to implement automated zeroing routines.

The known CO₂ concentration value and the reported CO₂ value from the sensor can be sent to the sensor using the **ZERO POINT ADJUSTMENT** command F.

AUTO-ZERO FUNCTION

The sensor has a built-in auto-zero function. To function correctly, the sensor must be exposed to typical background levels (400-450ppm) at least once during the auto-zero period. For example, many buildings will drop quickly to background CO_2 levels when unoccupied overnight or at weekends. The auto-zero function uses the information gathered during these periods to recalibrate. The sensor will reset the 'zero' level every time it does an auto-zero. Auto-zeroing is disabled by default. If the sensor is powered down, the auto-zeroing is reset to default values.

The auto-zero function works in the same way as the **ZERO IN FRESH AIR** command. Auto-zero is disabled by default, but can be enabled to operate automatically, or zeroing can be forced. The user can also independently adjust the CO_2 level used for auto-zeroing. Typically, it is set to the same value as the **ZERO IN FRESH AIR** value, but it can also be set at a different level if desired.

AUTO-ZERO INTERVALS

The auto-zero period can be programmed by the user. The sensor can be programmed to undertake an initial auto-zero after power-on. Thereafter, the auto-zero period can be set independently of the start-up zero setting time. Note, the auto-zero settings are reset if the sensor is powered down.

AUTO-ZERO SETTINGS

By default, the sensor will automatically 'zero' using the measured CO_2 level sampled during the auto-zero period. The user can alter the behaviour of the sensor because of the auto-zeroing process.

PRESSURE AND CONCENTRATION LEVEL COMPENSATION

NDIR gas sensors detect the concentration of gas by measuring the degree of light absorption by the gas analyte. The degree of light absorption is converted into a concentration reported by the sensor.

The absorption process is pressure and gas concentration dependent. In general, as the pressure increases, the reported gas concentration also increases. As the pressure decreases, the reported concentration decreases. This effect takes place at a molecular level and is common to all NDIR gas sensors.

SST sensors readings will vary due to pressure and CO_2 concentration. It is possible to correct for the effects of pressure and concentration by setting a compensation value. This will apply a permanent correction to the output of the sensor, depending on the compensation value. The compensation value needs to be written to the sensor and will overwrite the default value. The new compensation value will be used for all subsequent measurements and will be retained after a power cycle.

ALTITUDE COMPENSATION TABLE

Altitude	Altitude	Pressure	Sea Level	%	CO ₂	Compensation
(ft.)	(m)	(mbar)	Difference	Change	Measurement	Value
				per	Change (%)	
0	0	1,013	0	0.14	0	8,192
500	153	995	18	0.14	3	8,398
1,000	305	977	36	0.14	5	8,605
1,500	458	960	53	0.14	7	8,800
2,000	610	942	71	0.14	10	9,006
2,500	763	925	88	0.14	12	9,201
3,000	915	908	105	0.14	15	9,396
3,500	1,068	891	122	0.14	17	9,591
4,000	1,220	875	138	0.14	19	9,775
4,500	1,373	859	154	0.14	22	9,958
5,000	1,525	843	170	0.14	24	10,142
6,000	1,830	812	201	0.14	28	10,497
7,000	2,135	782	231	0.14	32	10,841
8,000	2,440	753	260	0.14	36	11,174
9,000	2,745	724	289	0.14	40	11,506
10,000	3,050	697	316	0.14	44	11,816

Other compensation values can be calculated using the following formula.

$$\textit{Compensation Value} = 8192 + \left(\frac{\textit{Sea Level Difference}*0.14}{100}\right) * 8192$$

The pressure compensation values calculated above are only approximate and only valid for concentrations below 1%. For higher accuracy compensation, the sensor output must be adjusted for both pressure and concentration as the CO_2 level measured by the sensor is affected by both ambient pressure and gas concentration levels. To calculate the adjusted CO_2 level, use the following calculator.

The corrected CO_2 level (C2) = C1/(1+Y(1013-P)),

where,

C1 = Concentration reading from sensor

P = Pressure in mbar

Where concentration < 1500ppm.

 $Y = 2.6661E-16 C1^4 - 1.1146E-12 C1^3 + 1.7397E-09 C1^2 - 1.2556E-06 C1 - 9.8754E-04$

Where concentration >1500ppm.

 $Y = 2.37472E-30 C1^6 - 2.70695E-25 C1^5 + 1.24012E-20 C1^4 - 2.91716E-16 C1^3 + 3.62939E-12 C1^2 - 1.82753E-08 C1 - 1.35129E-03$

Small Footprint Low Power CO₂ Sensor

CONTROL INTERFACE

The ExplorIR® family of sensors are controlled by writing and reading from the sensor via its UART interface. The Rx_In and Tx_Out pins are normally high, suitable for direct connection to a UART. If the sensor is to be read by a true RS232 device (e.g. a PC), it is necessary to pass through a level converter to step up/down the voltage and invert the signal.

CONTROL INTERFACE TIMING - UART MODE

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Baud Rate			9600		Bits/s
Data Bits		8			
Parity		None			
Stop Bits		1			
Hardware Flow Control		None			

UART COMMAND PROTOCOL

All UART commands must be terminated with a carriage return and line feed <CR><LF>, hex 0x0D 0x0A. In this document, this is shown as '\r\n'. UART commands that take a parameter always have a space between the letter and the parameter. The sensor will respond with a '?' if a command is not recognised. The two most common causes are missing spaces or missing <CR><LF> terminators.

All command communications are in ASCII and are terminated by carriage return, line feed (0x0D 0x0A). This document uses the protocol "\r\n" to indicate the carriage return line feed. All responses from the sensor, including measurements, have a leading space (ASCII character 32).

The character '#' represents an ASCII representation of a numeric character (0-9). Note there is a space between the first letter and any parameter. For example, the X command reads "X space 2000 carriage return line feed".

UART OPERATION

When initially powered, the sensor will immediately start to transmit a CO₂ reading on receiving any character.

The CO₂ measurement is reported as:

 $Z ##### \r\n$

where Z ##### shows the CO₂ concentration.

Note that all outputs from the sensor have a leading space.

UART INTERFACE SUMMARY

Syntax	Use	Example	Response	Comments
A ###\r\n	Set value of the digital filter	A 128\r\n	A 00128\r\n	See "Digital Filter"
a\r\n	Return the value of the digital filter	a\r\n	a 00128\r\n	See "Digital Filter"
F ##### ####\r\n	Fine Tune the zero point	F 410 400\r\n	F 33000\r\n	See "Zero Point Setting"
G\r\n	Zero-point setting using fresh air	G\r\n	G 33000\r\n	See "Zero Point Setting"
K #\r\n	Switches the sensor between different modes	K 1\r\n	K 1\r\n	
M ###\r\n	Sets the number of measurement data types output by the sensor	M 212\r\n	M 212\r\n	See "Output Fields"
P 8 ###\r\n P 9 #\r\n	Sets value of CO ₂ background concentration in ppm for auto-zero	P 8 1\r\n P 9 144\r\n		Two-byte value, P 8 = MSB P 9 = LSB 400ppm in the example
P 10 ###\r\n	Sets value of CO ₂	P 10 1\r\n		Two-byte value,
P 11 #\r\n	background concentration in ppm used for zero- point setting in fresh air.	P 11 144\r\n		P 8 = MSB P 9 = LSB 400ppm in the example
Q\r\n	Reports the latest measurement data types, as defined by 'M'	Q\r\n	H 12345 T 12345 Z 00010\r\n	·
S #####\r\n	Sets the pressure and concentration compensation value	S 8192\r\n	S 08192\r\n	See "Pressure and Concentration Compensation"
s\r\n	Returns the pressure and concentration compensation value	s\r\n	s 08192\r\n	See "Pressure and Concentration Compensation"
U\r\n	Zero-point setting using nitrogen	U\r\n	U 33000\r\n	See "Zero Point Setting"
u #####\r\n	Manual setting of the zero point.	u 32997\r\n	u 32997\r\n	See "Zero Point Setting"
X #####\r\n	Zero-point setting using a known gas calibration	X 2000\r\n	X 32997\r\n	See "Zero Point Setting"
Y\r\n	Return firmware version and sensor serial number	Y\r\n	Returns <u>two</u> lines	
Z\r\n	Return the most recent filtered CO2 measurement in ppm	Z\r\n	Z 01521\r\n	

Syntax	Use	Example	Response	Comments
z\r\n	Return the most	z\r\n	Z 01521\r\n	
	recent unfiltered CO2			
	measurement in ppm			
@ #.# #.#\r\n	Sets the timing for	@ 1.0 8.0\r\n	@ 1.0 8.0\r\n	See "Auto-zeroing" for
	initial and interval			details
	auto-zero periods			
@ r\n	Returns the Auto-	@ 1.0 8.0\r\n	@ 1.0 8.0\r\n	See "Auto-zeroing" for
	zero configuration			details
@ #r\n	Switch Auto-zeroing	@ 0\r\n	@ 0\r\n	See "Auto-zeroing" for
	on or off			details
.\r\n	Returns the scaling	.\r\n	. 00010\r\n	Multiply by 10 in the
	factor multiplier			example
	required to convert			
	the Z or z output to			
	ppm			

CO2 LEVEL MEASUREMENT VALUE - Z INFORMATION (0x5A)

Description	Reports the latest filtered CO ₂ measurement			
Syntax	SCII Character 'Z', terminated by 0x0D 0x0A (CR & LF)			
Example	Z\r\n			
Response	Z 00521\r\n			

This value needs to be multiplied by the appropriate scaling factor to derive the ppm value. See the '.' command.

CO2 LEVEL MEASUREMENT VALUE - z INFORMATION (0x7A)

The sensor is also capable of reporting the real time unfiltered CO₂ measurement value.

Description	Reports the unfiltered CO ₂ measurement			
Syntax	SCII Character 'Z', terminated by 0x0D 0x0A (CR & LF)			
Example	z\r\n			
Response	z 00521\r\n			

'.' COMMAND (0x2E)

To calculate the measurement value in ppm, the 'Z' or 'z' value, they must be converted into ppm by using the '.' multiplier factor. This multiplier will depend on the full-scale measurement range of the sensor. The multiplier is related to the full-scale range of the sensor.

The multiplier must also be used when sending CO_2 concentration levels to the sensor, for example when setting the fresh air CO_2 concentration value. The '.' Command can also be used to read back the scaling factor.

For example, if the user wants to zero the sensor in a known concentration of gas (e.g. 450ppm), the value written to the sensor must be 450/scaling factor.

Description	Returns a number indicating what multiplier must be applied to the Z CO2				
	measurement output to convert it into ppm.				
Syntax	ASCII character '.', terminated by 0x0D 0x0A (CR & LF)				
Example	.\r\n				
Response	. 00010\r\n (this number is variable, usually 10)				

Measurement Range of Sensor	CO ₂ Measurement Scaling Factor (Z)	CO ₂ Measurement Output Units	Example
0 – 60%	10	ppm/10	Z 01200 = 12000ppm = 1.2%
0 – 100%	100	ppm/100	Z 01500 = 15000ppm = 15%

K COMMAND

Command	Use	Default	Range	Example	Response	Comments
K #\r\n	Switches the sensor between different control modes	1		K 1\r\n	K 1\r\n	See 'K' Commands

K COMMAND (0x4B)

Description	Sets the control interface mode		
Syntax	ASCII character 'K', SPACE, mode number, terminated by 0x0D 0x0A (CR &		
	LF)		
Example	K 1\r\n		
Response	K 00001\r\n (this number is variable)		

DIGITAL FILTER COMMANDS

Command	Use	Default	Range	Example	Response	Comments
A ###\r\n	Set value of the digital filter	16	0 - 65635	A 16\r\n	A 00016\r\n	
a\r\n	Return value of digital filter		0 - 65365	a\r\n	a 00016\r\n	

A COMMAND (0x41)

Description	Set the value for the digital filter			
Syntax	ASCII character 'A', SPACE, decimal, terminated by 0x0D 0x0A (CR & LF)			
Example	A 16\r\n			
Response	A 00016\r\n (this number is variable)			

a COMMAND (0x61)

Description	Set the value for the digital filter				
Syntax	ASCII character 'A', SPACE, decimal, terminated by 0x0D 0x0A (CR & LF)				
Example	A 16\r\n				
Response	A 00016\r\n (this number is variable)				

ZERO POINT SETTING COMMANDS

Command	Use	Default	Range	Example	Response	Comments
F ##### #####\r\n	Fine Tune the zero point		Range of sensor	F 410 400\r\n	F 33000\r\n	See "Zero Point Setting"
G\r\n	Zero-point setting using fresh air			G\r\n	G 33000\r\n	See "Zero Point Setting"
U\r\n	Zero-point setting using nitrogen			U\r\n	U 33000\r\n	See "Zero Point Setting"
u #####\r\n	Manual setting of the zero point			u 32997\r\n	u 32997\r\n	See "Zero Point Setting"
X #####\r\n	Zero-point setting using a known gas concentration		Range of sensor	X 2000\r\n	X 32997\r\n	See "Zero Point Setting"
P 8 ###\r\n P 9 #\r\n	Sets value of CO ₂ background concentration in ppm for auto-zeroing	P 8 1\r\n P 9 144\r\n				Two-byte value, P 8 = MSB P 9 = LSB 400ppm in the example
P 10 ###\r\n P 11 #\r\n	Sets value of CO ₂ background concentration in ppm used for zero- point zeroing in fresh air.	P 10 1\r\n P 11 144\r\n				Two-byte value, P 8 = MSB P 9 = LSB 400ppm in the example

F COMMAND (0x46)

Description	Sets the zero-point using a known reading and a known CO ₂ concentration terminated by 0x0D 0x0A (CR & LF)			
Syntax	ASCII character 'F', SPACE, then the reported gas concentration, SPACE, then			
	the actual gas concentration, terminated by 0x0D 0x0A (CR & LF)			
Example	F 41 39\r\n			
Response	F 33000\r\n (the numbers are variable)			

G COMMAND (0x47)

Description	Sets the zero point assuming the sensor is in fresh air (typically 400ppm CO _{2,}				
	but level can be set by user – see P commands.)				
Syntax	ASCII character 'G' terminated by 0x0D 0x0A (CR & LF)				
Example	G\r\n				
Response	G 33000\r\n (the number is variable)				

U COMMAND (0x55)

Description	Sets the zero point assuming the sensor is in 0ppm CO₂ such as nitrogen.				
Syntax	ASCII Character 'U' terminated by 0x0D 0x0A (CR & LF)				
Example	U\r\n				
Response	U 32767\r\n(the number is variable)				

u COMMAND (0x75)

Description	Forces a specific zero set point value.			
	Input value is scaled by CO ₂ value multiplier, see '.' command.			
Syntax	ASCII character 'u', SPACE, then the gas concentration, terminated by 0x0D			
	OxOA (CR & LF)			
Example	u 32767\r\n			
Response	u 32767\r\n			

X COMMAND (0x58)

Description	Sets the zero point with the sensor in a known concentration of CO ₂ . Input value is scaled by CO ₂ value multiplier, see '.' command.				
Syntax	ASCII character 'X', SPACE, then the gas concentration, terminated by 0x0D (CR & LF)				
Example	X 1000\r\n				
Response	X 33000\r\n (the number is variable).				

P COMMAND - CO₂ Level for Auto-Zeroing

Description	Sets the value of CO ₂ in ppm used for auto-zeroing.					
	Input value is scaled by CO ₂ value multiplier, see '.' command.					
Syntax	ASCII character 'P', SPACE, then 8, SPACE, then MSB terminated by 0x0D 0x0A (CR & LF)					
	ASCII character 'P' then a space, then 9, then a space, then LSB terminated by 0x0D 0x0A (CR & LF)					
Example	P 8 0\r\n					
	P 9 40\r\n					
Response	p 8 0\r\n					
	p 9 40\r\n					

The value is entered as a two-byte word, MSB first.

MSB = Integer (Concentration/256) LSB = Concentration – (256*MSB)

In the above example, target CO₂ background concentration is 400ppm.

MSB = Integer (400/256) = 1LSB = 400 - 256 = 144

P COMMAND - CO₂ Level for Zero-Point Setting

Description	Sets value of CO ₂ in ppm for zero-point setting in fresh air.			
	Input value is scaled by CO ₂ value multiplier, see '.' command.			
Syntax	ASCII character 'P', SPACE, then 10, SPACE, then MSB terminated by 0x0D 0x0A (CR & LF)			
	ASCII character 'P', SPACE, then 11, SPACE, then LSB terminated by 0x0D 0x0A (CR & LF)			
Example	P 10 7\r\n			
	P 11 208\r\n			
Response	p 10 7\r\n			
	p 11 208\r\n			

MSB = Integer (Concentration/256) LSB = Concentration – (256*MSB)

In the above example, target zero-point CO₂ concentration is 2000ppm.

MSB = Integer (2000/256) = 7 LSB = 2000 - (256*MSB) = 208

AUTO-ZERO INTERVALS

UART Command	Use	Default	Range	Example	Response	Comments
@ #.# #.#\r\n	Auto-zero interval settings			@ 1.0 8.0\r\n	@ 1.0 8.0\r\n	See "Auto-zeroing function" for details

@ COMMAND (0x2E)

Description	Set the 'Initial Interval' and 'Regular Interval' for auto-zeroing events.				
Syntax	ASCII character '@', SPACE, decimal, SPACE, decimal terminated by 0x0D				
	OxOA (CR & LF)				
Example	@ 1.0 8.0\r\n				
Response	@ 1.0 8.0\r\n (the number mirrors the input value)				

Both the initial interval and regular interval are given in days. Both must be entered with a decimal point and one figure after the decimal point. In the above example, the auto-zero interval is set to 8 days, and the initial interval set to 1 day.

To disable auto-zeroing, send @ 0 r n.

To start an auto-zero immediately, send 65222\r\n.

To determine the auto-zero configuration, send @\r\n.

PRESSURE AND CONCENTRATION COMPENSATION

UART Command	Use	Default	Range	Example	Response	Comments
S ####\r\n	Sets the pressure and concentration compensation value	8192	0-65536	S 8192\r\n	S 08192\r\n	See "Pressure and Concentration Compensation"
s\r\n	Returns the pressure and concentration compensation value			s\r\n	s 08192\r\n	See "Pressure and Concentration Compensation"

S COMMAND (0x53)

Description	Set the 'Pressure and Concentration Compensation' value			
Syntax	ASCII character 'S', SPACE, decimal, terminated by 0x0D 0x0A (CR & LF)			
Example	S 8192\r\n			
Response	S 8192\r\n (the number mi	rrors the input value)		

s COMMAND (0x73)

Description	Reports the 'Pressure and Concentration Compensation' value.			
Syntax	ASCII Character 's', terminated by 0x0D 0x0A (CR & LF)			
Example	s\r\n			
Response	s 8192\r\n			

MEASUREMENT DATA OUTPUTS

The ExplorIR®-M sensor can provide filtered and unfiltered CO₂ data as a single string of data.

UART Command	Use	Default	Range	Example	Response	Comments
M #####\r\n	Sets the number of measurement data types output by the sensor. ##### is the mask value	M 00006\r\n		See "Output Fields"	M ####\r\n	Sets the number of measurement data types output by the sensor

Measurement Parameter	Field Identifier	Mask Value	
CO ₂ (Filtered)	Z	4	
CO ₂ (Unfiltered)	z	2	

The required mask value is the sum of the 'Mask Value' for each field required. To output filtered and unfiltered CO_2 data, set M=6.

M COMMAND

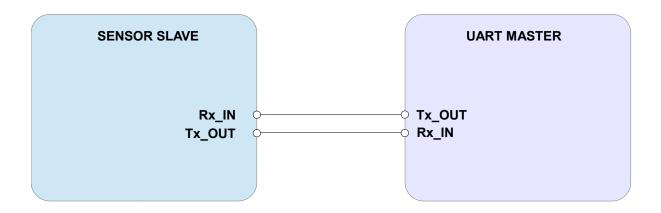
Description	Sets the type and number of data outputs			
Syntax	ASCII character 'M', terminated by 0x0D 0x0A (CR & LF)			
Example	M\r\n			
Response	M 04164\r\n			

Q COMMAND

Description	Reports the number of output data fields				
Syntax	ASCII character 'Q', SPACE, then Mask Value, terminated by 0x0D 0x0A (CR				
	& LF)				
Example	Q\r\n				
Response	Z 00010\r\n				

SERIAL NUMBER AND FIRMWARE VERSION

UART Command	Use	Default	Range	Example	Response	Comments
Y\r\n	Return firmware version and sensor serial number			Y\r\n	Returns <u>two</u> lines	


Y COMMAND (0x59)

Description	The present version string for the firmware and serial number of the sensor.
Syntax	ASCII character 'Y', terminated by 0x0D 0x0A (CR & LF)
Example	Y\r\n
Response	Y,Jan 30 2013,10:45:03,AL17\r\n ingB 00233 00000\r\n

N.B. This command returns two lines split by a carriage return line feed and terminated by a carriage return line feed. This command requires that the sensor has been stopped (see 'K' command).

CONNECTION DIAGRAM FOR UART INTERFACE

Small Footprint Low Power CO₂ Sensor

IMPORTANT NOTICE

SST Sensing Ltd. (SST) products and services are sold subject to SST's terms and conditions of sale, delivery and payment supplied at the time of order acknowledgement. SST warrants performance of its products to the specifications in effect at the date of shipment. SST reserves the right to make changes to its products and specifications or to discontinue any product or service without notice.

Customers should therefore obtain the latest version of relevant information from SST to verify that the information is current. Testing and other quality control techniques are utilised to the extent SST deems necessary to support its warranty. Specific testing of all parameters of each device is not necessarily performed unless required by law or regulation. In order to minimise risks associated with customer applications, the customer must use adequate design and operating safeguards to minimise inherent or procedural hazards. SST is not liable for applications assistance or customer product design. The customer is solely responsible for its selection and use of SST products. SST is not liable for such selection or use nor for use of any circuitry other than circuitry entirely embodied in a SST product.

SST products are not intended for use in life support systems, appliances, nuclear systems or systems where malfunction can reasonably be expected to result in personal injury, death or severe property or environmental damage. Any use of products by the customer for such purposes is at the customer's own risk.

SST does not grant any licence (express or implied) under any patent right, copyright, mask work right or other intellectual property right of SST covering or relating to any combination, machine, or process in which its products or services might be or are used. Any provision or publication of any third party's products or services does not constitute SST's approval, licence, warranty or endorsement thereof. Any third party trademarks contained in this document belong to the respective third-party owner.

Reproduction of information from SST datasheets is permissible only if reproduction is without alteration and is accompanied by all associated copyright, proprietary and other notices (including this notice) and conditions. SST is not liable for any unauthorised alteration of such information or for any reliance placed thereon.

Any representations made, warranties given, and/or liabilities accepted by any person which differ from those contained in this datasheet or in SST's standard terms and conditions of sale, delivery and payment are made, given and/or accepted at that person's own risk. SST is not liable for any such representations, warranties or liabilities or for any reliance placed thereon by any person.

ADDRESS

SST Sensing Ltd.
5 Hagmill Crescent,
Shawhead Industrial Estate,
Coatbridge,
ML5 4NS,
United Kingdom

REVISION HISTORY

DATE	RELEASE	DESCRIPTION OF CHANGES	PAGES
05/03/2020	4.0	First revision	All
05/05/2020	4.1	Changed auto-zero explanation	All